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Quantum-classical correspondence in polygonal billiards

Jan Wiersig
Max-Planck-Institut fu¨r Physik komplexer Systeme, D-01187 Dresden, Germany

~Received 18 August 2000; revised manuscript received 14 March 2001; published 19 July 2001!

We show that wave functions in planar rational polygonal billiards~all angles rationally related top) can be
expanded in a basis of quasistationary and spatially regular states. Unlike the energy eigenstates, these states
are directly related to the classical invariant surfaces in the semiclassical limit. This is illustrated for the barrier
billiard. We expect that these states are also present in integrable billiards with point scatterers or magnetic-flux
lines.
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I. INTRODUCTION

The relation between wave motion in the sho
wavelength regime and the corresponding ray dynamics i
fundamental importance in quantum mechanics, electrom
netics, and acoustics. It has been found in quantum mec
ics that the properties of the stationary solutions of
Schrödinger equation, the eigenstatesuEj& of the Hamil-
tonian, reflect the degree of order in the classical ray dyn
ics. For example, energy eigenfunctions^x,yuEj& of classi-
cally integrable systems with quasiperiodic motion
invariant tori are regular, while eigenfunctions of classica
chaotic systems with ergodic motion on energy surfaces
typically irregular. For generic systems, it has been con
tured @1# ~see@2# for a review! that in the~semi-! classical
limit \→0, the averaged Wigner transforms of typical e
ergy eigenfunctions ‘‘condense’’ uniformly onto the underl
ing classical stationary objects in phase space, which
usually invariant tori, chaotic components, or entire ene
surfaces. In this paper, however, we consider a class of
tems with exotic classical invariant surfaces for which it
not cleara priori whether such a condensation scenario
ists.

The classical free motion inside a planar domainQ with
elastic reflection at the boundary has a constant of mot
Hamilton’s function H5px

21py
21V(x,y). The particle’s

mass is 1/2, andV(x,y)50 if (x,y)PQ and` otherwise. A
billiard with polygonal boundary has a second constant
motion K(px ,py) if all angles a j between sides are ratio
nally related top, i.e., a j5mjp/nj , wheremj ,nj.0 are
relatively prime integers@3,4#. However, this does not imply
integrability in the sense of Arnol’d@5#. The Poisson bracke
$H,K% vanishes identically only if mj51 for all j
51,2, . . . , so only rectangles, equilateral triangle
p/2,p/4,p/4 triangles, andp/2,p/3,p/6 triangles are inte-
grable. Critical corners withmj.1 destroy the integrability
in a singular way:$H,K% is zero everywhere in phase spa
except at a measure-zero set corresponding to the cri
corners; the phase space is foliated by two-dimensiona
variant surfacesH,K5constant as in integrable systems, b
they do not have the topology of tori. The motion is n
quasiperiodic and characterized as pseudointegrable@6#.

The quantum-mechanical free wave motion with Dirich
boundary conditions on a rational polygon barely reflects
1063-651X/2001/64~2!/026212~8!/$20.00 64 0262
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classical pseudointegrability if only individual eigenfun
tions of the HamiltonianH5H(x,y,px ,py) are considered. A
typical eigenfunction is hard to distinguish from eigenfun
tions in classically chaotic systems@7–10#. It is in general
not an eigenfunction of the second operatorK5K(px ,py)
and has nonzero uncertaintyDK5(^K2&2^K&2)1/2, since the
commutator@H,K# does not vanish. Only a subtle signatu
of pseudointegrability seems to be contained in individ
energy eigenfunctions, namely in the distribution of zeros
the associated Husimi function@11#. The closeness to the
quantum mechanics of chaotic systems on the one side
to the classical dynamics of integrable systems on the o
side is a first hint of an unusual quantum-classical corresp
dence.

A further indication pointing in this direction comes from
an analogy with the metal-insulator transition of the And
son model in three dimensions. Both kinds of systems h
energy-level statistics close to the semi-Poisson distribu
@12#. In the Anderson model, at the transition point betwe
extended states with Wigner statistics and localized st
with Poisson distributed energy levels, this intermediate s
tistics has its origin in the multifractal character of the wa
functions, which are neither extended nor localized@13#.
Analogously, a typical energy state in a rational polygon
expected to be a fractal in momentum space@12#, localized
around an energy surface but neither extended nor local
within this surface; condensation onto a lower-dimensio
invariant surface is ruled out.

As a final indication, we will present a numerical study o
a particular system, the barrier billiard. Instead of Wign
transforms in four-dimensional phase space, we study di
butions in the two-dimensional (H,K)-space, where each
point represents a classical invariant surface. In this cont
we define condensation asDH/^H&→0 andDK/^K&→0 in
the semiclassical limit. This ensures that mean values of
quantum operators in highly excited states can be interpr
as well-defined values of the classical constants of mot
Our central issue is to demonstrate that even though the
ergy states presumably do not show such a condensa
there is an alternative basis of states that do so up to cla
cally long times.

The paper is organized as follows. In Sec. II, we constr
the basis for general rational polygons. Its time evolution
discussed in Sec. III. In Sec. IV, we illustrate our stateme
for the barrier billiard. We conclude with a brief summary
©2001 The American Physical Society12-1
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JAN WIERSIG PHYSICAL REVIEW E 64 026212
Sec. V and an Appendix with details on the numerical co
putations.

II. CONSTRUCTION OF THE BASIS

In the following, we will introduce states with relativel
small DK at the expense of a nonzero but also small ene
uncertaintyDH. As for coherent states in the harmonic o
cillator @14#, we will minimize the product of the uncertain
ties involved. To do so, we consider the uncertainty relat

DHDK>
1

2
u^@H,K#&u. ~1!

It is an easy matter to show that the equality in Eq.~1! holds
in a stateuL& satisfying

~H2^H&!uL&5 ia~K2^K&!uL&, ~2!

where i 2521, a is an arbitrary real number and̂. . . &
5^Lu . . . uL& with ^LuL&51. uL& has to be a right eigenvec
tor of the operator

L5H2 iaK. ~3!

L does not commute with its adjoint. It therefore does n
belong to the class of normal operators, which contains H
mitian and unitary operators as special cases. In general
right eigenvectors of a nonnormal operator cannot be use
a basis. Instead, right and left eigenvectors together for
biorthogonal basis; see, e.g.,@15#. In our case, however
^Ei uLuEj& is a complex-symmetric matrix due to the fact th
the Hermitian matriceŝEi uHuEj& andKi j 5^Ei uKuEj& can be
made real. Left and right eigenvectors are therefore ident
and form separately a nonorthogonal basis. Furthermor
can be shown thatDH5uauDK. In order to have equal un
certainties we choosea51 ~states witha521 are identi-
cal!. The real and imaginary parts of the complex eigenv
uesL have a physical interpretation as mean energies^H&
and 2^K&, respectively. Note that the classical functionH
2 iK is a constant of motion whose constant-level surfa
are the invariant surfaces.

We derive now the properties of theuL& states in the limit
\→0. Without loss of generality, we stipulate thatK andK
are homogeneous functions of the momenta of degree
like H andH. Starting from the expansion~see, e.g.,@16,17#!

^px ,pyu i @H,K#ux,y&^x,yupx ,py&5\$H,K%1O~\2!,
~4!

we will exploit only the fact that the Poisson bracket$H,K%
is everywhere zero except at isolated critical points in po
tion space. The following line of reasoning is therefore a
true for integrable billiards with a finite number of magnet
flux lines or point scatterers~we have checked this for Sˇeba’s
billiard @18#!. In the semiclassical regime, both sides of E
~4! are very small in the regionQ\C excluding the unionC of
neighborhoods of the critical corners, the area of wh
shrinks to zero as\→0. Manipulating Eq.~2! and restricting
the integration over anuL& state to regionQ\C gives
02621
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~DHQ\C!21~DKQ\C!25^ i @H,K#&Q\C , ~5!

with (DHQ\C)25^(H2^H&)2&Q\C , etc. ~Note that ^1&Q\C
,1.) The smallness of the left-hand side of Eq.~4! carries
over to both sides of Eq.~5!. From this we conclude that a
function^x,yuL& in regionQ\C is locally either very small or
can be approximated by a joint eigenfunction of both ope
tors H and K. Such a joint eigenfunction cannot fulfill th
boundary conditions globally, otherwise the billiard would
integrable. Loosely speaking, regionQ\C must be divided
into subregions in each of which a joint eigenfunction~or a
vanishing function! fulfills the boundary conditions locally
Joint eigenfunctions of neighboring subregions ma
smoothly, so they must have roughly the same numbe
nodal lines. Hence,uL& states have features of energy sta
of integrable systems:~i! the functionŝ x,yuL& are in some
regions regular while in other regions, separated by ‘‘ca
tics,’’ vanishing; ~ii ! they can be labeled by two ‘‘quantum
numbers’’ (n1 ,n2); ~iii ! the eigenvaluesL5^H&2 i ^K& are
regularly distributed in the complex plane. The last prope
holds becausêH& ~all arguments are also valid for quantitie
derived fromK) is asymptotically equal tôH&Q\C , which is
approximately a homogeneous function of the quantum nu
bers of degree two due to the homogeneity ofH. The non-
relevance of̂ H&C can be understood with a renormalizatio
procedure. Going from (n1 ,n2) to (2n1,2n2), we get a new
wave function with slightly larger regionQ\C containing
four times more nodal lines, and regionC being a four times
smaller copy of the old regionC. Hence,^H&Q\C roughly
increases by a factor of four, whilêH&C stays constant. This
leads to ^H&→^H&Q\C as more and more renormalizatio
steps bring us towards the semiclassical limit.

The approximate homogeneity of^H&Q\C with respect to
the quantum numbers ensures that the local transitions
tween different joint eigenfunctions induce only a small u
certainty (DHQ\C)2 of order ^H&!^H2&, increasing roughly
by a factor of four under the action of the renormalizatio
The same factor is an upper bound for the increase
(DHC)2, corresponding to âH2& scaling weighted with the
size of C. The sum (DH)25(DHQ\C)21(DHC)2 therefore
increases by a factor of four. Hence,

~DH !2}^H&, ~DK !2}^K& ~6!

in the semiclassical limit. Consequently,

lim
\→0

DH

^H&
→0, lim

\→0

DK

^K&
→0, ~7!

i.e., theuL& states condense onto the invariant surfaces.

III. TIME EVOLUTION

The time dependence ofuL& states is nontrivial sinceL
does not commute with the Hamiltonian;uL(t)& is in general
not an eigenstate ofL for t.0. Let us define three time
scales associated with a given stateuL& at time t50: the
quantum mean period, the lifetime and the classical m
free time
2-2
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QUANTUM-CLASSICAL CORRESPONDENCE IN . . . PHYSICAL REVIEW E64 026212
tQ5
2p\

^H&
, tL5

2p\

DH
, tC5A A

2^H&
, ~8!

whereA is the area of the billiard. From Eq.~6! we gettQ
!tL'tC, i.e., the state is quasistationary with a lifetime
order of the classical mean free time.

At first glance, it seems that the state fails to conde
onto an invariant surface for classical long timest@tC.
However, the requirements for condensation, small rela
uncertainties and constant mean values ofH and K, may
persist beyond the lifetime of the state. Clearly, this is t
for the relative uncertainty and the mean value ofH since
this operator commutes with the evolution operator e
(2iHt/\). Keeping in mind that̂ i @H,K#& is relatively small,
we may expect that the relative uncertainty and the m
value ofK change slower than the state itself. To see this,
define the time scale associated with

^K&~ t !5^L~ t !uKuL~ t !&5 (
j ,k51

`

^LuEj&K jkei (Ej 2Ek)t/\^EkuL&,

~9!

in the same way as the lifetime in Eq.~8! as tK
52p\/DHK , where

~DHK!25

(
j ,k

u^LuEj&K jk~Ej2Ek!^EkuL&u2

2(
j ,k

u^LuEj&K jk^EkuL&u2
~10!

is the mean energy difference, i.e., mean frequency dif
ence, of the energy states involved, but in contrast toDH the
states are weighted according to their relevance for^K&(t).
Two extreme cases show that definition~10! is reasonable: a
diagonal matrixK jk gives DHK50 whereas a uniform ma
trix K jk5constant givesDHK5DH.

The series~9! can be expanded in orders oft, with t much
smaller thantK but with the possibility of being larger tha
the quantum mean period and even the lifetime. Clearly,
zeroth-order term iŝK&. The next terms are roughly of orde

^K&DHKt, ^K&(DHKt)2, and so on. If we compare this to

^K&~ t !5^K&1^ i @H,K#&t/\1O~ t2!, ~11!

we find that the order oftK can be estimated a
2p^K&/^ i @H,K#&. It follows that in the semiclassical limi
^K&(t) does not change relative to its initial value for clas
cally long timest below tK@tC, even thoughuL(t)& may
differ strongly from the initial stateuL&.

Following the same line of reasoning shows that the ti
below which^K2&(t) relative to its initial value is constan
scales aŝK2&/^ i @H,K2#&. Starting from Eq.~2!, the follow-
ing equation can be derived

^ i @H,K2#&22^K&^ i @H,K#&52^~K2^K&!3&. ~12!

With the renormalization procedure, it can be shown that
asymptotic behavior of the right-hand side~rhs! of this equa-
tion is bounded from above bŷK&2. Together with the al-
02621
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ready known result̂ i @H,K#&}^K& we finally get the upper
bound^ i @H,K2#&}^K2&. Hence, the time scale that govern
^K2&(t) is of the same or of larger order astK . From this we
can conclude that for times smaller thantK , DK(t) remains
small if compared witĥK&(t). Hence, Eq.~7! holds not only
for times of ordertL'tC but also for times much larger tha
tC and well belowtK . The condensation ofuL& states onto
invariant surfaces outlives the lifetime of the states up
classically long times.

IV. EXAMPLE: THE BARRIER BILLIARD

We illustrate all statements for the barrier billiard@19–
21#, a rectangle with widthl x and heightl y and a vertical
barrier of lengthl y/2 placed on the symmetry linex5 l x/2;
see Fig. 1~a!. The billiard is not only pseudointegrable, it
also almost integrable@22#, i.e., it is composed of severa
copies of a single integrable sub-billiard, here the rectan
shown in Fig. 1~b!. The functionK5px

2 is a second constan
of motion. The general formula for the genus of the invaria
surfaces@6# gives 2, i.e., the surfaces have the topology
two-handled spheres and not that of tori~single-handled
spheres!.

The energy eigenfunctions are solutions of the Helmho
equation with Dirichlet boundary conditions on the polygo
The functions are odd or even with respect to the symme
line. The odd ones are trivial eigenfunctions of the integra
sub-billiard. We therefore deal only with the even one
which fulfill mixed boundary conditions on the symmet
reduced polygon; see Fig. 1~b!. We have calculated the solu
tions numerically with the mode-matching method for t
parameters\51, l x5pA8p/3, and l y53A8p/p as de-
scribed in Sec. A in the Appendix. The statistical propert
of the energy levels are found to be close to the semi-Pois
distribution @12#. The energy eigenfunctions are not eige
functions of the operatorK5px

2 . The numerical computation
of the uncertaintyDK is explained in Sec. B in the Appen
dix. Figure 2 shows that there is no trend towards vanish
relative uncertainties. This indicates that energy states of
barrier billiard do not condense onto the invariant surface

The nontrivial uL& states are also calculated with th
mode-matching method. As explained in Sec. C in the A
pendix we cannot compute as many of these states as en
states. However, even in the accessible low-energy reg

FIG. 1. ~a! Barrier billiard, rectangle with a barrier between th
points (x,y)5( l x/2,0) and (l x/2,l y/2). ~b! Symmetry reduced sys
tem. The nontrivial wave functions fulfill Dirichlet~Neumann!
boundary conditions on solid~dashed! lines.
2-3
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JAN WIERSIG PHYSICAL REVIEW E 64 026212
our theoretical results on the semiclassical behavior of th
states will be well confirmed in the following.

The regular pattern of the eigenvaluesL5^H&2 i ^K& can
be most clearly seen when transformed into the real ac
variables of the integrable sub-billiard

~ I x ,I y!5S l x

2p
A^K&,

l y

p
A^H&2^K& D . ~13!

Note that the topology of the invariant surfaces in the f
system rules out action-angle variables@6#. As can be seen
from Fig. 3 the ‘‘action space’’ is split into two regionsA and
B separated by a transition region. Away from this transit
region, and the linesI x50 and I y50, the eigenvalues ar
approximately located on regular lattices that are given
~EBK!-like quantization rules:

~ I x ,I y!5S n11
3

4
,n211D\ ~14!

in regionA and

FIG. 2. Relative uncertaintyDK/^K& of energy statesuEj&. A
local Gaussian average with a variance of 200 is performed. In
Contour plot of the probability density associated to the 626th
ergy state withE5646.03,^K&5135.05, andDK5144.01.

FIG. 3. EigenvaluesL5^H&2 i ^K& transformed into the action
space of the sub-billiard according to Eq.~13!. The dotted line
marks the center of the transition region. The solid lines indic
parts of the EBK lattices defined in Eqs.~14!–~15!.
02621
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~ I x ,I y!5S n1

2
1

1

2
,2n21

7

4D\ ~15!

in region B with n1 ,n250,1, . . . . Forexample, we have
(I x ,I y)'(6.75,37)\ for the eigenfunction of typeA and
(I x ,I y)'(21,9.7)\ for the function of typeB in Fig. 4. Both
types have relatively small uncertainties~see Sec. D in the
Appendix for numerical details! and look rather regular
While type-A functions cover the billiard uniformly, apar
from a localization around the critical corner, the typeB
functions are restricted to the lower (n1 odd! or upper (n1
even! half of the billiard, bounded by a causticlike curve.

The eigenvalue pattern in Fig. 3 resembles strongly tha
integrable systems with separatrices@23–25#. It is therefore
not surprising that the statistical properties of the mean
ergies ofuL& states are similar to those of the energy levels
integrable systems. For example, Fig. 5 confirms that
nearest-neighbor statistics is in agreement with the Pois
distribution.

The scaling laws~6! for the uncertainties are verified i
the following way. First note that lines of constant me
energy ^H& are circles in the scaled action spa
(2I x / l x ,I y / l y). This plane can therefore be conveniently p
rametrized by the radial coordinate^H& and the polar angle
f5arctan@(Iy /ly)/(2Ix /lx)#. The first scaling law holds if
(DH)2 divided by ^H& is a function off alone. Figure 6

t:
-

e

FIG. 4. Probability density of a stateuL& of type A ~left! with
eigenvalue 656.302 i64.93 andDH5DK534.88; typeB ~right!
with eigenvalue 670.952 i630.52 andDH5DK525.14.

FIG. 5. Probability densityP(s) of the spacings between adja-
cent values of the first 800 mean energies^H&. The data is well
fitted by the Poisson distribution~dotted line!.
2-4
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QUANTUM-CLASSICAL CORRESPONDENCE IN . . . PHYSICAL REVIEW E64 026212
shows that this condition is well satisfied. This confirms a
the second scaling law sinceDK5DH and ^K& scales as
^H&.

The main features of the time dependence ofuL& states
can be observed in Figs. 7 and 8; see Sec. E in the Appe
for the numerical aspects. For small timest aroundtQ!tL
'26.7tQ, the time evolved stateuL(t)& and the initial state
uL& are similar; the overlapu^L(t)uL&u2 is close to one. For
times t'tL both states differ considerably; the overlap
close to zero. The state has lost some of its regularity,
^K&(t) and DK(t) stay constant up to order^K& for longer
times well belowtK'2736tQ. Interestingly, the states o
type B become more uniformly distributed in configuratio
space in the course of time, cf. Figs. 4~b!, 8~a!, and 8~b!.

V. CONCLUSION

We have formulated the quantum-classical corresp
dence in rational polygonal billiards in the following wa
there exists a basis of quantum states with each state
densing individually onto a classical invariant surfaceH,K
5constant up to classically long times in the sense that
relative uncertaintiesDH/^H& and DK/^K& vanish in the
semiclassical limit. We have presented some hints, like
analogy to the Anderson metal-insulator transition, and

FIG. 6. (DH)2/^H& vs f with 400<^H&<800. The maximum
lies in the transition region of action space; cf. Fig. 3.

FIG. 7. Overlapu^L(t)uL&u2 ~solid!, ^K&(t)/^K& ~dotted! and
DK(t)/^K&(t) ~dashed! for the state of typeB with L5670.95
2 i630.52; cf. Fig. 4.
02621
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merical evidence for a particular system, the barrier billia
that the energy states do not show such a condensation
have then introduced an alternative basis of states for wh
we have explicitly shown that~i! they are quasistationary
~ii ! they condense onto the invariant surfaces up to cla
cally long times even exceeding their lifetimes;~iii ! in con-
figuration space, they show a regular nodal-line structu
possibly with causticlike boundaries; and~iv! the eigenval-
ues form a regular pattern in the complex plane.

Whether these states condense uniformly onto the inv
ant surfaces in phase space is another question. At first s
our numerical results on the barrier billiard seem to indic
that there cannot be uniform condensation since a fractio
the states cover only one half of the configuration spa
However, each such state becomes more uniformly dist
uted on the invariant surface for times beyond the lifetim
but remains in the neighborhood of the surface for classic
long times, i.e., there can be uniform condensation a
some transient time.

It is important to note that the condensation scena
holds for general rational polygonal billiards and also if t
time-dependent Schro¨dinger equation is replaced by th
wave equation used in acoustics and electromagnetics,
though the individual time scales are different.
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APPENDIX: NUMERICAL COMPUTATIONS
ON THE BARRIER BILLIARD

A. Energy states

We compute the energy eigenvalues and eigenfunct
with the mode-matching method; see, e.g.,@6,26,27#. Let us
first set\51 and then divide the symmetry-reduced barr
billiard in two regions as shown in Fig. 1~b!: region 1 with
y< l and region 2 withy. l . The length of the barrierl is in
our case fixed tol y/2, but the following derivations hold also
for general 0, l , l y . In region 1 we expand the wave func
tion as

F15 (
m51

`

am sin~2mpx/ l x!sin~g2my! ~A1!

FIG. 8. State of typeB with L5670.952 i630.52, cf. Fig. 4, at
time t510tQ ~left! and t5tL'26.7tQ ~right!.
2-5
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with

gj
2~E!5E2S j p

l x
D 2

. ~A2!

This kind of expansion is nontrivial sincegj can be imagi-
nary andam complex. By construction, the function~A1!
fulfills the Helmholtz equation2¹2F15EF1 with Dirichlet
boundary condition onx50, y50, andx5 l x/2. In region 2
we take an analog function,

F25 (
m51

`

bm sin@~2m21!px/ l x#sin@g2m21~ l y2y!#,

~A3!

which satisfies Dirichlet boundary condition onx50 andy
5 l y but Neumann boundary condition onx5 l x/2. We stipu-
late that both functions match smoothly aty5 l , i.e., for 0
<x< l x/2 we require

F1~x,l !5F2~x,l ! ~A4!

and

]F1

]y U
(x,l )

5
]F2

]y U
(x,l )

. ~A5!

Inserting the identity

sin~2nz!5 (
k51

`

Ank sin@~2k21!z# ~A6!

for 0<z<p/2 with the orthogonal matrix

Ank5
2

p S sin@~2n22k11!p/2#

2n22k11
2

sin@~2n12k21!p/2#

2n12k21 D
~A7!

into the first matching condition~A4! and solving for the
coefficients of sin@(2n21)px/lx#, n51, . . . , gives

(
m51

`

am sin~g2ml !Amn5bn sin@g2n21~ l y2 l !#. ~A8!

Similarly, we get from the second matching condition~A5!

(
m51

`

amg2m cos~g2ml !Amn52bng2n21 cos@g2n21~ l y2 l !#.

~A9!

We now rewrite the relations~A8!–~A9! by using the defi-
nitions

ãm5amg2m cos~g2ml !, ~A10!

b̃m5bmg2m21 cos@g2m21~ l y2 l !#, ~A11!

and the real function
02621
f m~E,l !5
tan~gml !

gm
~A12!

as

(
m51

`

ãmf 2m~E,l !Amn5b̃nf 2n21~E,l y2 l ! ~A13!

and

(
m51

`

ãmAmn52b̃n . ~A14!

The last two equations are combined to

(
m51

`

ãmMmn50 ~A15!

with the real matrix

Mmn~E!5@ f 2m~E,l !1 f 2n21~E,l y2 l !#Amn . ~A16!

Equation~A15! has a solution provided detM (E)50. Find-
ing the energy eigenvaluesEi is therefore equivalent to find
ing the zeros of the determinant ofM. We approximateM by
a 5003500 matrix that is sufficient for calculating the firs
100 000 zeros. Figure 9 shows the determinant as a func
of the energy. It is convenient to search roots numerica
only between two consecutive poles. We therefore rew
Eq. ~A12! using the identity@28#

2
p

4z
tan

pz

2
5 (

n51

`
1

z22~2n21!2
~A17!

as

f m~E,l !52
2

l (
n51

`
1

E2S mp

l x
D 2

2S np

2l D 2 , ~A18!

where the summation is only over oddn. From this expres-
sion the poles can be easily read off. Note that the poles
not degenerate ifl 2/ l x

2 and (l y2 l )2/ l x
2 are irrational numbers

The interval between two given consecutive poles is divid

FIG. 9. Determinant of matrixM in Eq. ~A16!.
2-6
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into 400 subintervals, each assumed to contain at mo
single change of sign of detM . The bisection method is the
employed in order to find each zero with an accuracy'1024

of the mean level spacing.
Having determined the energy levels, we get for each

them the real quantitiesãm and b̃m from Eqs. ~A14! and
~A15! and then the wavefunction~A1! and ~A3!, which we
finally normalize to unity for the full billiard.

B. Uncertainties of energy states

We here determine the uncertainty (DK)25^K2&2^K&2 in
a given uEj&-state. We takeF15F1(Ej ), g5g(Ej ), and
F25F2(Ej ) from Eqs. ~A1!–~A3! to compute K j j

5^Ej uKuEj&5^K& from

K j j 52E
0

l x/2E
0

l

F1* S 2
]2

]x2
F1D dxdy

12E
0

l x/2E
l

l y
F2* S 2

]2

]x2
F2D dxdy. ~A19!

A straightforward calculation gives

K j j 5
l x

4 (
m51

`

am
2 h2mF l 2

sin~2g2ml !

2g2m
G

1
l x

4 (
m51

`

bm
2 h2m21F ~ l y2 l !2

sin@2g2m21~ l y2 l !#

2g2m21
G ,

~A20!

with am5am(Ej ), bm5bm(Ej ), gm5gm(Ej ), and hm

5(mp/ l x)
2. Analogously, we get for̂K2&5^px

4& again Eq.
~A20! but with hm5(mp/ l x)

4.

C. zL ‹ states

Eigenvalues and eigenfunctions ofL can be computed
with the procedure described in Sec. A in the Appendix if E
~A2! is replaced by

gj
2~L !5L2~12 i !S j p

l x
D 2

~A21!

with complex numberL. M in Eq. ~A16! is then a complex
matrix. Finding the complex roots of detM is much more
cumbersome than finding real roots as in the case of
energy states. Because of this, we first computeL in energy-
state representation, i.e., we calculate the matrix elem
^Ej uLuEk&5Ejd jk2 iK jk with K jk5^Ej uKuEk& given by Eq.
~A20! if j 5k, otherwise
02621
a

f

.

e

ts

K jk5
l x

4 (
m51

`

am
† amh2mF sin~g2m

2 l !

g2m
2

2
sin~g2m

1 l !

g2m
1 G

1
l x

4 (
m51

`

bm
† bmh2m21F sin@g2m21

2 ~ l y2 l !#

g2m21
2

2
sin@g2m21

1 ~ l y2 l !#

g2m21
1 G ~A22!

with am
† 5am* (Ej ), am5am(Ek), bm

† 5bm* (Ej ), bm

5bm(Ek), gm
15gm* (Ej )1gm(Ek), gm

25gm* (Ej )2gm(Ek),
andhm5(mp/ l x)

2. A LAPACK routine is used to diagonal
ize the complex matrix̂Ej uLuEk& with j ,k<1000, giving a
rough approximation to the first 800 eigenvalues ofL. We
use them as initial guesses for Newton’s method in orde
find reliable approximations to the eigenvalues. Finally,
compute for each determined eigenvalue the complex qu
tities ãm and b̃m from Eqs. ~A14! and ~A15! and then the
normalized wave functions~A1! and ~A3!.

D. Uncertainties of zL ‹ states

The main advantage of using the mode-matching met
for the uL& states is that we get the uncertaintiesDK andDH
as accurately as for the energy states in Sec. B in the App
dix. We takeF15F1(L j ), F25F2(L j ), andg5g(L j ) from
Eqs.~A1!, ~A3!, and~A21! to compute first̂ K& starting from
Eq. ~A19!. A straightforward calculation shows that^K& is
given by the rhs of Eq.~A22! with am

† 5am* (L j ), am

5am(L j ), bm
† 5bm* (L j ), bm5bm(L j ), gm

15gm* (L j )
1gm(L j ), gm

25gm* (L j )2gm(L j ), andhm5(mp/ l x)
2. Simi-

larly, we get for^K2&5^px
4& the same equation but withhm

5(mp/ l x)
4; for ^H& we usehm5gm

2 (L j )1(mp/ l x)
2 and for

^H2& we usehm5ugm
2 (L j )1(mp/ l x)

2u2.

E. Time dependence ofzL ‹ states

Here we computê x,yuL(t)&, ^L(t)uL&, ^K&(t), and
^K2&(t). These expressions can be written in terms of ene
states as

^x,yuL~ t !&5(
j 51

`

e2 iE j t^Ej uL&^x,yuEj&, ~A23!

^L~ t !uL&5(
j 51

`

eiE j tu^Ej uL&u2, ~A24!

and as in Eq.~9!. The first 1400 energy states are incorp
rated in these sums. As in the previous sections it can
shown that^Ej uL& is given by the rhs of Eq.~A22! with
am

† 5am* (Ej ), am5am(L), bm
† 5bm* (Ej ), bm5bm(L), gm

1

5gm* (Ej )1gm(L), gm
25gm* (Ej )2gm(L), and hm51.

^Ej uK2uEk& is also given by the rhs of Eq.~A22! if j Þk with
am

† 5am* (Ej ), am5am(Ek), bm
† 5bm* (Ej ), bm5bm(Ek), gm

1

5gm* (Ej )1gm(Ek), gm
25gm* (Ej )2gm(Ek), and hm

5(mp/ l x)
4. For j 5k, one has to use Eq.~A20!.
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